The ultrafilter number for uncountable κ

Diana Carolina Montoya Joint work with: Andrew-Brooke Taylor, Vera Fischer and Sy-David Friedman

Kurt Gödel Research Center. University of Vienna. Winter school in abstract analysis, section set theory & topology

February, 2016

Diana Carolina Montoya

The ultrafilter number for uncountable κ

Kurt Gödel Research Center

Contents

The ultrafilter number on ω .

The uncountable case Our result

Applications

▲□▶▲□▶▲≣▶▲≣▶ = ● のへの

Diana Carolina Montoya

Contents

The ultrafilter number on ω .

The uncountable case Our result

Applications

- * ロ * * 個 * * 目 * * 目 * * 日 * * 9 < 0

Diana Carolina Montoya

Contents

The ultrafilter number on ω .

The uncountable case Our result

Applications

- * ロ * * 個 * * ヨ * * ヨ * ・ ヨ ・ シタの

Diana Carolina Montoya

Section 1

The ultrafilter number on ω .

Diana Carolina Montoya

The ultrafilter number for uncountable κ

Kurt Gödel Research Center

イロト イロト イヨト

The ultrafilter number and its neighbors.

We will focus our interest in the cardinal invariant defined by:

Definition

 $\mathfrak{u} = \min\{|\mathcal{B}|: \mathcal{B} \text{ is a base for a non-principal ultrafilter on } \omega\}$

It is ZFC provable that (Blass- Combinatorial cardinal characteristics of the continuum):

- $\blacktriangleright \ \aleph_1 \leq \mathfrak{u} \leq \mathfrak{c}.$
- One of its lowers bounds is the cardinal r, and as consequence b, e, h, t and p.

The ultrafilter number on	
---------------------------	--

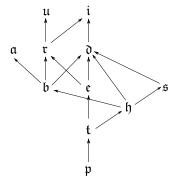


Figure 1: \mathfrak{u} and its neighbors

Diana Carolina Montoya

The ultrafilter number for uncountable κ

Kurt Gödel Research Center

The ultrafilter number on $\omega.$		

Using forcing it is possible to prove, that:

- Theorem (Kunen, Lemma V.4.27 in [5])
- It is consistent that $\mathfrak{u} = \aleph_1$ and $\mathfrak{c} = \kappa$ for $\kappa > \aleph_1$.
- How?... We use Mathias forcing:

Definition (Ultrafilter Mathias Forcing)

Let \mathcal{U} be an ultrafilter on ω . The ultrafilter Mathias forcing $\mathbb{M}_{\mathcal{U}}$ has, as its set of conditions, $\{(s, A) : s \in [\omega]^{<\omega} \text{ and } A \in \mathcal{U}\}$, and the ordering given by:

 $(t,B) \leq (s,A)$ if and only if $t \supseteq s, B \subseteq A$ and $t \setminus s \subseteq A$.

Idea of the proof:

Start with a ground model in which $\mathfrak{c} = \kappa$, the forcing is obtained as a finite support iteration $(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} : \alpha \leq \aleph_1, \beta < \aleph_1)$ of Mathias forcing relative to some ultrafilters that are constructed along the iteration.

Remember that, if at step $\alpha < \omega_1$ Mathias forcing respect to an ultrafilter \mathcal{U}_{α} in $V^{\mathbb{P}_{\alpha}}$ is used (let $\dot{\mathcal{U}}_{\alpha}$ be a \mathbb{P}_{α} -name for it), we add generically a subset of ω , X_{α} that is a pseudointersection of $\dot{\mathcal{U}}_{\alpha}$, i.e. in $V^{\mathbb{P}}$ we have that, for all $F \in \mathcal{U}_{\alpha}$, $X_{\alpha} \subseteq^* F$.

Image: A mathematical states and a mathem

Thus, define $\mathbb{P}_0 = \mathbb{1}$ and $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \mathbb{M}(\dot{\mathcal{U}}_{\alpha})$ where $\dot{\mathcal{U}}_{\alpha}$ is a \mathbb{P}_{α} -name for a non principal ultrafilter that satisfies both $X_{\alpha} \in \dot{\mathcal{U}}_{\alpha+1}$ and $\forall \beta < \alpha$, $\Vdash_{\alpha} \dot{\mathcal{U}}_{\beta} \subseteq \dot{\mathcal{U}}_{\alpha}$.

Finally, the inequality $\mathfrak{u} \leq \aleph_1$ will be witnessed by the ultrafilter $\bigcup_{\alpha < \omega_1} \dot{\mathcal{U}}_{\alpha}$ generated by the sets $\{X_{\alpha} : \alpha < \aleph_1\}$; and the ccc will guarantee that $\mathfrak{c} = \kappa$ still holds in $V^{\mathbb{P}}$.

Diana Carolina Montoya

The uncountable case

Applications

References

Section 2

The uncountable case

Diana Carolina Montoya

The ultrafilter number for uncountable κ

Kurt Cädel Pessarch Conter

< ロ > < 回 > < 回 > < 回 > <</p>

In this talk we will be mainly interested in the generalization of the ultrafilter number and the analogue of the result presented in the section before $(Con(\mathfrak{u} < \mathfrak{c}))$ for an uncountable cardinal κ .

Definition

 $\mathfrak{u}(\kappa) = \min\{|\mathcal{B}|: \mathcal{B} \text{ is an base for a uniform ultrafilter on } \kappa\}.$ Uniform just means that all the sets in the ultrafilter have size κ .

	т	he u	iltrafil			er on	
--	---	------	----------	--	--	-------	--

The uncountable case

Applications

Our result

Subsection 1

Our result

▲□▶▲圖▶▲≣▶▲≣▶ ■ の900

Diana Carolina Montoya

The ultrafilter number for uncountable κ

Kurt Gödel Research Center

	The uncountable case	References
Our result		

Theorem

Suppose κ is a supercompact cardinal, κ^* is a regular cardinal with $\kappa < \kappa^* \leq \Gamma$ and Γ is a cardinal that satisfies $\Gamma^{\kappa} = \Gamma$. Then there is a forcing extension in which cardinals have not been changed satisfying:

$$\begin{aligned} \kappa^* &= \mathfrak{u}(\kappa) = \mathfrak{b}(\kappa) = \mathfrak{d}(\kappa) = \mathfrak{a}(\kappa) = \mathfrak{s}(\kappa) = \mathfrak{r}(\kappa) = \operatorname{cov}(\mathcal{M}_{\kappa}) \\ &= \operatorname{add}(\mathcal{M}_{\kappa}) = \operatorname{non}(\mathcal{M}_{\kappa}) = \operatorname{cof}(\mathcal{M}_{\kappa}) \text{ and } 2^{\kappa} = \Gamma. \end{aligned}$$

If in addition $\gamma < \kappa^* \to \gamma^{<\kappa} < \kappa^*$, then we can also provide that $\mathfrak{i}(\kappa) = \kappa^*$. If in addition $(\Gamma)^{<\kappa^*} \leq \Gamma$ then we can also provide that $\mathfrak{p}(\kappa) = \mathfrak{t}(\kappa) = \mathfrak{h}_{\mathcal{W}}(\kappa) = \kappa^*$ where \mathcal{W} is a κ -complete ultrafilter on κ .

	The uncountable case	
Our result		

Theorem

Suppose κ is a supercompact cardinal, κ^* is a regular cardinal with $\kappa < \kappa^* \leq \Gamma$ and Γ satisfies $\Gamma^{\kappa} = \Gamma$. Then there is forcing extension in which cardinals have not been changed satisfying:

$$\begin{aligned} \kappa^* &= \mathfrak{u}(\kappa) = \mathfrak{b}(\kappa) = \mathfrak{d}(\kappa) = \mathfrak{a}(\kappa) = \mathfrak{s}(\kappa) = \mathfrak{r}(\kappa) = \operatorname{cov}(\mathcal{M}_{\kappa}) \\ &= \operatorname{add}(\mathcal{M}_{\kappa}) = \operatorname{non}(\mathcal{M}_{\kappa}) = \operatorname{cof}(\mathcal{M}_{\kappa}) \text{ and } 2^{\kappa} = \Gamma. \end{aligned}$$

If in addition $\gamma < \kappa^* \to \gamma^{<\kappa} < \kappa^*$, then we can also provide that $\mathfrak{i}(\kappa) = \kappa^*$. If in addition $(\Gamma)^{<\kappa^*} \leq \Gamma$ then we can also provide that $\mathfrak{p}(\kappa) = \mathfrak{t}(\kappa) = \mathfrak{h}_{\mathcal{W}}(\kappa) = \kappa^*$ where \mathcal{W} is a κ -complete ultrafilter on κ .

Diana Carolina Montoya

Generalized Mathias

First we explain how to build a model where $\mathfrak{u}(\kappa) = \kappa^* > \kappa^+$ and $2^{\kappa} = \Gamma$. Again we will use a generalized version of Mathias forcing, namely:

Definition (Generalized Mathias Forcing)

Let κ be a measurable cardinal, and let \mathcal{F} be a κ -complete filter on κ . The Generalized Mathias Forcing $\mathbb{M}_{\mathcal{F}}^{\kappa}$ has, as its set of conditions, $\{(s, A) : s \in [\kappa]^{<\kappa} \text{ and } A \in \mathcal{F}\}$, and the ordering given by $(t, B) \leq (s, A)$ if and only if $t \supseteq s, B \subseteq A$ and $t \setminus s \subseteq A$. We denote by $\mathbb{1}_{\mathcal{F}}$ the maximum element of $\mathbb{M}_{\mathcal{F}}^{\kappa}$, that is $\mathbb{1}_{\mathcal{F}} = (\emptyset, \kappa)$.

• • • • • • • • • • • •

The main model

In the uncountable case, it is necessary to use a more sophisticated forcing notion. The reason for which the standard generalization of the proof for the countable case (i.e. a $< \kappa$ -support iteration of generalized Mathias forcing) does not work is the following:

If $(\mathcal{U}_n : n \in \omega)$ is an increasing sequence of κ -complete ultrafilters it is possible that $\bigcup_{n \in \omega} \mathcal{U}_n$ is not even a κ -complete filter. $\odot \odot$.

Let Γ be such that $\Gamma^{\kappa} = \Gamma$. We will define an iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} : \alpha \leq \Gamma^{+}, \beta < \Gamma^{+} \rangle$ of length Γ^{+} recursively as follows:

イロト イボト イヨト イヨト

	The uncountable case	References
Our result		

Suppose we are in the model $V^{\mathbb{P}_{\alpha}}$ and let NUF denote the set of normal ultrafilters on κ in this model.

- If α is an even ordinal, let $\mathbb{Q}_{\alpha} = \{\mathbb{1}_{\mathbb{Q}_{\alpha}}\} \cup \{\{\mathcal{U}\} \times \mathbb{M}_{\mathcal{U}}^{\kappa} : \mathcal{U} \in \mathsf{NUF}\}\ \text{and extension relation}$ stating that $q \leq p$ if and only if either $p = \mathbb{1}_{\mathbb{Q}_{\alpha}}$, or there is $\mathcal{U} \in \mathsf{NUF}\ \text{such that}\ p = (\mathcal{U}, p_1),\ q = (\mathcal{U}, q_1)\ \text{and}\ q_1 \leq_{\mathbb{M}_{\mathcal{U}}^{\kappa}} p_1.$
- If α is an odd ordinal, let Q
 _α be a P_α-name for a κ-centered, κ-directed closed forcing notion of size at most Γ.

Image: Image:

	The uncountable case	References
Our result		

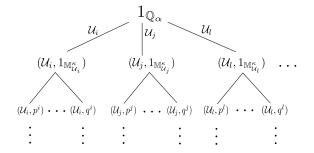


Figure 2: The forcing \mathbb{Q}_{α} (α even) in the $V^{\mathbb{P}_{\alpha}}$ extension.

A D > <
 A P >
 A

Diana Carolina Montoya

	The uncountable case	References
Our result		

Given a condition $p\in \mathbb{P}=\mathbb{P}_{\Gamma^+}$, we will have three kinds of support:

- The Ultrafilter Support (USup(p)), that corresponds to the set of ordinals β ∈ dom(p) ∩ EVEN such that p ↾ β ⊨_{P_β} p(β) ≠ 1_{Q_β}.
- ▶ Then Essential Support (SSup(*p*)), which consists of all $\beta \in \text{dom}(p) \cap \text{EVEN}$ such that $\neg(p \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}} p(\beta) \in \{\check{\mathbb{1}}_{\mathbb{Q}_{\beta}}\} \cup \{(\mathcal{U}, \mathbb{1}_{\mathcal{U}}) : \mathcal{U} \in \text{NUF}\}).$
- ► The Directed Support $\mathsf{RSup}(p)$, consists of all $\beta \in \mathsf{dom}(p) \cap \mathsf{ODD}$ such that $\neg(p \upharpoonright \beta \Vdash p(\beta) = \mathbb{1}_{\dot{\mathbb{Q}}_{\beta}})$.

Image: A math a math

Diana Carolina Montoya

	The uncountable case	
Our result		

Then we require that the conditions in \mathbb{P}_{Γ^+} have support bounded below Γ^+ and also that given $p \in \mathbb{P}_{\Gamma^+}$, if $\beta \in USup(p)$ then for all $\alpha \in \beta$, $\alpha \in USup(p)$ and that both SSup(p) and RSup(P) have size $< \kappa$ and are contained in sup(USup(p)).

Image: A mathematical states and a mathem

Our result

Properties of the forcing $\mathbb{P} = \mathbb{P}_{\Gamma^+}$:

- \mathbb{P} is κ -directed closed.
- If p ∈ P_{Γ+} and i = sup(USup(p)) = sup(supp(p)). Then P_i ↓ (p ↾ i) is κ⁺-cc and has a dense subset of size at most Γ.
- The key property: Suppose that p ∈ P is such that p ⊨ U is a normal ultrafilter on κ, then for some α < Γ⁺ there is an extension q ≤ p such that q ⊨ U_α = U ∩ V[G_α]. Moreover this can be done for a set of ordinals S ⊆ Γ⁺ of order type κ* in such a way that ∀α ∈ S(U ∩ V_α ∈ V[G_α]) and U ∩ V[G_{sup S}] ∈ V[G_{sup S}]. Here U_α is the canonical name for the ultrafilter generically chosen at stage α.

< 口 > < 同 >

Our result

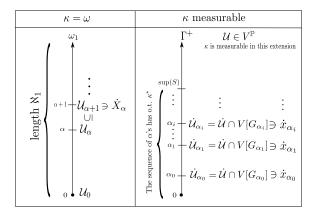


Figure 3: Methods to find an ultrafilter with a small base.

Diana Carolina Montoya

The ultrafilter number for uncountable κ

Kurt Gödel Research Center

	The uncountable case	References
Our result		

Theorem

Suppose κ is a supercompact cardinal and κ^* is a regular cardinal with $\kappa < \kappa^* \leq \Gamma$, $\Gamma^{\kappa} = \Gamma$. There is a forcing notion \mathbb{P}^* preserving cofinalities such that $V^{\mathbb{P}^*} \models \mathfrak{u}(\kappa) = \kappa^* \wedge 2^{\kappa} = \Gamma$.

Proof idea: We will not work with the whole generic extension given by \mathbb{P} . In fact we will chop the iteration in the step $\alpha = \sup(S)$ which is an ordinal of cofinality κ^* . Define $\mathbb{P}^* = \mathbb{P}_{\alpha}$.

Take *G* to be a \mathbb{P}^* -generic filter, the equality $2^{\kappa} = \Gamma$ is a consequence of the fact that the domains of the conditions obtained in the key property can be chosen in such a way that they all have size Γ .

	The uncountable case 000000000000	References
Our result		

To prove $\mathfrak{u}(\kappa) = \kappa^*$ we consider the ultrafilter \mathcal{U}^* on κ given by the restriction of \mathcal{U} . Then by the same lemma note that for all $i \in S$ the restriction of \mathcal{U} to the model $V[G_i]$ belongs to $V[G_{i+1}]$ and moreover, this is the ultrafilter U_i^G chosen generically at stage *i*.

Furthermore by our choice of Master Conditions the κ -Mathias generics \dot{x}_i belong to \mathcal{U} . Then \mathcal{U}^* is generated by \dot{x}_i for $i \in S$. The other inequality $\mathfrak{u}(\kappa) \geq \kappa^*$ is a consequence of $\mathfrak{b}(\kappa) \geq \kappa^*$ and $\mathfrak{b}(\kappa) \leq \mathfrak{u}(\kappa)$.

Applications

Section 3

Applications

The ultrafilter number for uncountable κ

メロト メタト メヨト メヨト

æ

Other cardinal invariants that can be decided in $V^{\mathbb{P}}$

Definition

The unbounding and dominating numbers, $\mathfrak{b}(\kappa)$ and $\mathfrak{d}(\kappa)$ respectively are defined as follows:

 $\mathfrak{b}(\kappa) = \min\{|\mathfrak{F}|: \mathfrak{F} \text{ is an unbounded family of functions from} \\ \kappa \text{ to } \kappa\}.$

 $\mathfrak{d}(\kappa) = \min\{|\mathfrak{F}|: \mathfrak{F} \text{ is a dominating family of functions from} \\ \kappa \text{ to } \kappa\}.$

Image: A math a math

Diana Carolina Montoya

	Applications	References

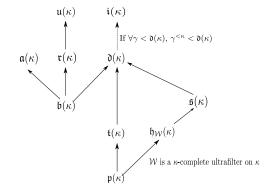


Figure 4: Provable inequalities for κ -measurable.

A B > 4
 B > 4
 B
 B > 4
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Diana Carolina Montoya

Definition (Generalized Laver forcing)

Let \mathcal{U} be a κ -complete non-principal ultrafilter on κ .

- A U-Laver tree is a κ-closed tree T ⊆ κ^{<κ} of increasing sequences with the property that ∀s ∈ T(|s|≥ |stem(T)|→ succ_T(s) ∈ U)}.
- The generalized Laver Forcing L^κ_U consists of all U-Laver trees with order given by inclusion.

Proposition

Generalized Laver forcing $\mathbb{L}_{\mathcal{U}}^{\kappa}$ generically adds a dominating function from κ to κ .

• • • • • • • • • • • •

Image: A math a math

Lemma

If \mathcal{U} is a normal ultrafilter on κ , then $\mathbb{M}^{\kappa}_{\mathcal{U}}$ and $\mathbb{L}^{\kappa}_{\mathcal{U}}$ are forcing equivalent.

Corollary

If \mathcal{U} is a normal ultrafilter on κ then $\mathbb{M}^{\kappa}_{\mathcal{U}}$ always adds dominating functions, so we have $\mathfrak{b}(\kappa) = \kappa^* = \mathfrak{d}(\kappa)$.

Proposition In $V^{\mathbb{P}}$, $\mathfrak{s}(\kappa)$ and $\mathfrak{r}(\kappa)$ also take the value κ^* .

Diana Carolina Montoya

The intermediate forcing

Until now, we have not used the poset added in the odd steps of our iteration, we will do it in order to decide the cardinal characteristics $i(\kappa)$ and $a(\kappa)$ in the resulting model. Remember that in these steps the forcing takes a name for an arbitrary κ -centered, κ -directed closed forcing notion of size at most Γ .

We will prove that both cardinals $\mathfrak{a}(\kappa)$ and $\mathfrak{i}(\kappa)$ take also the value κ^* by introducing (with the help of the odd steps) witnesses for $\mathfrak{a}(\kappa), \mathfrak{i}(\kappa) \leq \kappa^*$.

	Applications	
000000000000		/

Definition

Two sets A and $B \in \mathcal{P}(\kappa)$ are called κ -almost disjoint if $A \cap B$ has size $< \kappa$. We say that a family of sets $\mathcal{A} \subseteq \mathcal{P}(\kappa)$ is κ -almost disjoint if it has size at least κ and all its elements are pairwise κ -almost disjoint. A family $\mathcal{A} \subseteq [\kappa]^{\kappa}$ is called a κ -maximal almost disjoint (abbreviated κ -mad) if it is κ -almost disjoint and is not properly included in another such family.

< 🗇 🕨

Definition

 $\mathfrak{a}(\kappa) = \min\{|\mathfrak{A}|: \mathfrak{A} \text{ is a } \kappa\text{-mad family}\}.$

Diana Carolina Montoya

Poset adding a κ -mad family

Definition

Let $\mathcal{A} = \{A_i\}_{i < \delta}$ be a κ -almost disjoint family. Let $\overline{\mathbb{Q}}(\mathcal{A}, \kappa)$ be the poset of all pairs (s, F) where $s \in 2^{<\kappa}$ and $F \in [\mathcal{A}]^{<\kappa}$, with extension relation stating that $(t, H) \leq (s, F)$ if and only if $t \supseteq s$, $H \supseteq F$ and for all $i \in \text{dom}(t) \setminus \text{dom}(s)$ with t(i) = 1 we have $i \notin \bigcup \{A : A \in F\}$.

Note that the poset $\overline{\mathbb{Q}}(\mathcal{A}, \kappa)$ is κ -centered and κ -directed closed. If G is $\overline{\mathbb{Q}}(\mathcal{A}, \kappa)$ -generic then $\chi_G = \bigcup \{t : \exists F(t, F) \in G\}$ is the characteristic function of an unbounded subset x_G of κ such that $\forall A \in \mathcal{A}(|A \cap x_G|) < \kappa$.

Diana Carolina Montoya

	Applications	References

The poset ${\mathbb Q}$ has the following property, that in fact ensures maximality.

Proposition

If $Y \in [\kappa]^{\kappa} \setminus \mathcal{I}_{\mathcal{A}}$, where $\mathcal{I}_{\mathcal{A}}$ is the κ -complete ideal generated by the κ -ad-family \mathcal{A} , then $\Vdash_{\Theta(\mathcal{A},\kappa)} | Y \cap \dot{x}_{\mathcal{G}} | = \kappa$.

Note: The construction for the witnesses of $i(\kappa)$ is similar to the one we just present for the case of mad families.

References I

- James Cummings and Saharon Shelah. Cardinal invariants above the continuum. Ann, Pure Appl. Logic, 75(3):251–268, 1995.
- [2] Mirna Džamonja and Saharon Shelah. Universal graphs at the successor of a singular cardinal. J. Symbolic Logic, 68(2):366–388, 2003.
- [3] Vera Fischer, Andrew D. Brooke-Taylor, Sy-David Friedman, and Diana Carolina Montoya. Cardinal characteristics at κ in a small u(κ) model. Submitted.
- Shimon Garti and Saharon Shelah.
 Partition calculus and cardinal invariants. arXiv:1112.5772, 2012.
- [5] Kenneth Kunen. Set Theory. North-Holland, 1980.

・ロト・西ト・ヨト・ヨー めんの